Fluid Mechanics 4th Ed McGrawHill
Thursday, April 22, 2010
The fourth edition of this textbook sees some additions and deletions but no philosophical change. The basic outline of eleven chapters and five appendices remains the same. The triad of integral, differential, and experimental approaches is retained and is approached in that order of presentation. The book is intended for an undergraduate course in fluid mechanics, and there is plenty of material for a full year of instruction.
The author covers the first six chapters and part of Chapter7 in the introductory semester.
The more specialized and applied topics from Chapters 7 to 11 are then covered at our university in a second semester. The informal, student-oriented style is retained and, if it succeeds, has the flavor of an interactive lecture by the author.
Approximately 30 percent of the problem exercises, and some fully worked examples,have been changed or are new. The total number of problem exercises has increased to more than 1500 in this fourth edition. The focus of the new problems is on practical and realistic fluids engineering experiences. Problems are grouped according to topic, and some are labeled either with an asterisk (especially challenging) or a computer-disk icon (where computer solution is recommended). Anumber of new photographs and figures have been added, especially to illustrate new design applications and new instruments.
Professor John Cimbala, of Pennsylvania State University, contributed many of the new problems. He had the great idea of setting comprehensive problems at the end of each chapter, covering a broad range of concepts, often from several different chapters. These comprehensive problems grow and recur throughout the book as new concepts arise. Six more open-ended design projects have been added, making 15 projects in all. The projects allow the student to set sizes and parameters and achieve good design with more than one approach.
The author covers the first six chapters and part of Chapter7 in the introductory semester.
The more specialized and applied topics from Chapters 7 to 11 are then covered at our university in a second semester. The informal, student-oriented style is retained and, if it succeeds, has the flavor of an interactive lecture by the author.
Approximately 30 percent of the problem exercises, and some fully worked examples,have been changed or are new. The total number of problem exercises has increased to more than 1500 in this fourth edition. The focus of the new problems is on practical and realistic fluids engineering experiences. Problems are grouped according to topic, and some are labeled either with an asterisk (especially challenging) or a computer-disk icon (where computer solution is recommended). Anumber of new photographs and figures have been added, especially to illustrate new design applications and new instruments.
Professor John Cimbala, of Pennsylvania State University, contributed many of the new problems. He had the great idea of setting comprehensive problems at the end of each chapter, covering a broad range of concepts, often from several different chapters. These comprehensive problems grow and recur throughout the book as new concepts arise. Six more open-ended design projects have been added, making 15 projects in all. The projects allow the student to set sizes and parameters and achieve good design with more than one approach.
An entirely new addition is a set of 95 multiple-choice problems suitable for preparing for the Fundamentals of Engineering (FE) Examination. These FE problems come at the end of Chapters 1 to 10. Meant as a realistic practice for the actual FE Exam, they are engineering problems with five suggested answers, all of them plausible, but only one of them correct.
New to this book, and to any fluid mechanics textbook, is a special appendix, Appendix E, Introduction to the Engineering Equation Solver (EES), which is keyed to many examples and problems throughout the book. The author finds EES to be an extremely attractive tool for applied engineering problems. Not only does it solve arbitrarily complex systems of equations, written in any order or form, but also it has builtin property evaluations (density, viscosity, enthalpy, entropy, etc.), linear and nonlinear
regression, and easily formatted parameter studies and publication-quality plotting.
The author is indebted to Professors Sanford Klein and William Beckman, of the University of Wisconsin, for invaluable and continuous help in preparing this EES material.
The book is now available with or without an EES problems disk. The EES engine is available to adopters of the text with the problems disk.
Another welcome addition, especially for students, is Answers to Selected Problems. Over 600 answers are provided, or about 43 percent of all the regular problem assignments. Thus a compromise is struck between sometimes having a specific numerical goal and sometimes directly applying yourself and hoping for the best result.
Download
mirror
http://www.4shared.com/office/skNfCMLt/Fluid_Mechanics_4th_Ed_McGraw_.html
0 comments:
Post a Comment