Chitika

Air Pollution Control Systems for Boiler and Incinerators

Friday, March 26, 2010

















7 MB 200 pages
Downloadhttp://cramitin.us/jedtpjlwr8jq
OR
http://www.4shared.com/office/QlmH3jzm/Air_Pollution_Control_Systems_.html

Read more...

Heating and Air Conditioning of Buildings




7.7 Mb, 737 pages

Download

mirror

http://www.4shared.com/office/gV6oDx3J/Heating_and_Air_Conditioning_o.html

Read more...

Hazard and Operability















5 mb 110 pages
Download

Read more...

CNC Part Programming Commands
































Download

Read more...

Cooling and Heating Load Calculations























Download 

mirror

http://www.4shared.com/office/XNJMucwr/Cooling-and-Heating-Load-Calcu.html

Read more...

Aerodynamics Aeronautics and Flight Mechanics



















3.5 mb 94 pages

Download
OR
http://www.4shared.com/folder/ux5hVC2l/_online.html

Read more...

Hydraulic calculation lecture













Download

mirror

http://www.4shared.com/office/Wso_Ffme/Hydraulic_calculation_lecture-.html
 

Read more...

Liquid Pipeline Hydraulics








This book presents liquid pipeline hydraulics as it applies to transportation of liquids through pipelines in a single-phase steady state environment. It serves as a practical handbook for engineers, technicians, and others involved in design and operation of pipelines transporting liquids. Existing books on the subject are mathematically rigorous and theoretical but lack practical applications. Using this book, engineers can better understand and apply the principles of hydraulics to their daily work in the pipeline industry without resorting to complicated formulas and theorems. Numerous examples from my experience are included to illustrate application of pipeline hydraulics.


The application of hydraulics to liquid pipelines involves an understanding of various properties of liquids, the concept of pressure, friction, and calculation of the energy required to transport liquid from point A to point B through a pipeline. You will not find rigorous mathematical derivation of formulas in this book. The formulas necessary for calculations are presented and described without using calculus or complex mathematical methods. The reader interested in how the formulas and equations are derived should refer to the books and other publications in the References section.

This book covers liquid properties that affect flow through pipelines, calculation of pressure drop due to friction, horsepower, and the number of pump stations required for transporting a liquid through a pipeline. Among the topics considered are the basic equations necessary for pipeline design, commonly used formulas to calculate frictional pressure drop andnecessary horsepower, the feasibility of improving an existing pipeline’s performance using drag-reduction additives, and power optimization studies. The use of pumps and valves in pipelines is addressed along with modifications necessary to improve pipeline throughput. Economic analysis and transportation tariff calculations are also included.
The book can be used for the analysis of liquid pipeline gathering systems, plant or terminal piping, and long-distance trunk lines. The primary audience is engineers and technicians working in the petroleum, water, and process industries. could also be used as a text for a collegelevel course in liquid pipeline hydraulics.
E.Shashi Menon

2.6 mb 287 pagas

 Downlod 

mirror
http://www.4shared.com/office/-wKAiwqo/Liquid_Pipeline_Hydraulics_by_.html

Read more...

Heating Systems, Plant and Control

Thursday, March 25, 2010


















Contents
1 Introduction1
1.1Heating: the fundamental building service1
1.2Low-pressure hot water1
1.3The need for ef?cient heating systems2
1.4Scope of the book3
1.5Content of the book: an overview37

PART AHEAT GENERATION
2 Boilers and Burners9
2.1De?nition of a boiler9
2.2Principal functional elements of a boiler9
2.2.1Gas-?red boilers9
2.2.2Oil-?red boilers10
2.2.3Solid fuel boilers12
2.3The boiler block12
2.3.1Function of the boiler block12
2.3.2Configuration and design12
2.3.3The multi-pass principle15
2.3.4Water content and temperature differential16
2.3.5Wet-base and dry-base types18
2.4The burner18
2.4.1Function of the burner18
2.4.2Boiler fuels and the combustion process18
2.4.3Burner design23
2.4.4Atmospheric natural gas burners25
2.4.5Fan-assisted and forced-draught natural gas burners29
2.4.6Premix natural gas burners32
2.4.7Other natural gas burners34
2.4.8Burners for other gases34
2.4.9Pressure-jet oil burners36
2.4.10Other atomizing oil burners38
2.4.11Dual-fuel burners39
2.5Burner operation and control39
2.5.1Functions of burner control39
2.5.2Modes of control for burner output40
2.5.3On/off control of burner output40
2.5.4High/low/off control of burner output42
2.5.5Modulating control of burner output45
2.5.6Control of burner safety46
2.6The burner gas line47
2.7The boiler control system49
2.7.1Boiler controls and system controls49
2.7.2Control of the burner50
2.7.3Boiler safety and limit controls52
2.7.4Reporting functions: remote monitoring54
2.8The boiler casing55

Read more...

Membrane Separations in Biotechnology


















4.2 mb 412 pages
Download
OR
http://www.4shared.com/rar/ojBEmtOH/Membrane_Separations_in_Biotec.html
 

Read more...

ASM Surface Hardening of Steels



















318 page 6 mb
Download

Read more...

Powder Coatings

 


















Total 0.5 MB

Download

Read more...

The Design of Modern Steel Bridges

Tuesday, March 23, 2010



226 pages 2.6 mb
Download

Read more...

Industrial Waste Treatment Handbook

Saturday, March 20, 2010



Content
1 Management of Industrial Wastes: Solids, Liquids, and Gases 1
1.1 Management of Industrial Wastewater 1
1.2 O&M Costs 10
1.3 Management of Solid Wastes from Industries 18
1.4 Management of Discharges to the Air 20
1.5 Bibliography 28

2 Fundamentals 29
2.1 Introduction 29
2.2 Characteristics of Industrial Wastewater 29
2.3 The Polar Properties of Water 30
2.4 Electrical and Thermodynamic Stability 33
2.5 Chemical Structure and Polarity of Water 36
2.6 Hydrogen Bonding 37
2.7 Polar Solvents versus Nonpolar Solvents 38
2.8 Emulsification 40
2.9 Colloidal Suspensions 43
2.10 Mixtures Made Stable by Chelating Agents 44
2.11 Summary 44
2.12 Examples 45
2.13 Bibliography 48

Read more...

Gas Furnace Guideline

Monday, March 15, 2010


CHAPTER 1: PREFACE

CHAPTER 2: DESCRIPTION 3
A. Heating Efficiency  3
B. Furnace Types 3
Natural Draft Furnace  4
Fan-Assisted Combustion Furnace  4
Direct Vent Furnace 4
Condensing Furnace 4
Pulse Combustion Furnace  5
C. Furnace Venting 5
Venting Categories 5
Automatic Vent Dampers  6
D. Limitations 6

CHAPTER 3: HISTORY AND STATUS 7
A. Efficiency Ratings 7
B. Energy Efficiency Standards 7
C. Other Standards  8
D. Condensing Furnace Manufacturers  8
Bryant  8
Heil  8
Lennox 8
Thermopride  8
Trane 8

CHAPTER 4: ANALYSIS 9
A. Overview  9
B. Energy Savings  9
C. Cost Effectiveness  10

CHAPTER 5: DESIGN ANALYSIS GRAPHS  11
A. Using the Furnace Graphs 11
Annual Energy Cost Savings Graphs 11
Normalized Energy Cost Graphs  11
Cost Effectiveness Graphs  12
B. Energy Cost Savings Graphs  13
90% Efficient, Condensing Furnaces 13
C. Cost Effectiveness Graphs  20
90% Efficient, Condensing Furnaces 20
CHAPTER 6: BIBLIOGRAPHY  29
CHAPTER 7: APPENDIX  31
A. Building Type Descriptions  31
B. Summary of Utility Rates  33
C. Scalar Ratio and SIR 34
Scalar Ratios Simplified 34
Selecting a Scalar Ratio 35
Savings to Investment Ratios (SIRs) 35
Advanced Economic Analysis  36

Download

mirror
http://www.4shared.com/office/BqCBu6Qr/Gas_Furnace_Guideline.html

Read more...

Engineers’ Guide to Pressure Equipment The Pocket Reference


Chapter 1 Websites: Quick Reference 1
1.1 Organizations and associations 1
1.2 General technical information 4
1.3 Directives and legislation 6
1.4 The KKS power plant classification system 7

Chapter 2 Pressure Equipment Types and Components 11
2.1 What is pressure equipment? 11
2.2 Pressure equipment categories 11
2.3 Pressure equipment symbols 13

Chapter 3 Basic Design 21
3.1 Introduction – the influence of codes and standards 21
3.2 Vessel design – basic points 21
3.2.1 Design basis 21
3.2.2 Safety first – corrosion allowance and welded joint efficiency 23
3.2.3 Pressure vessel cylinders 24
3.2.4 Vessel classes 25
3.2.5 Heads 25
3.2.6 Openings and compensation 29
3.2.7 Inspection openings 32
3.2.8 Pipes and flanges 33
3.2.9 Pads 33
3.2.10 Vessel supports 34
3.3 Simple pressure vessels (SPVs) – basic design 35
3.3.1 Material selection 35
3.3.2 Welds 37
3.3.3 Stress calculations 37
3.4 Gas cylinders – basic design 39
3.5 Heat exchangers – basic design 47
3.5.1 Contact-type exchangers 47
3.5.2 Surface-type exchangers 47
3.5.3 Thermal design 47
3.5.4 Special applications 53
3.6 Design by Analysis (DBA) – pr EN 13445 53
3.6.1 What does DBA offer? 53
3.6.2 How does DBA fit into pr EN 13445? 55
3.6.3 DBA – the technical basis 55

Chapter 4 Applications of Pressure Vessel Codes 59
4.1 Principles 59
4.2 Code compliance and intent 59
4.3 Inspection and test plans (ITPs) 60
4.4 Important code content 63
4.5 PD 5500 64
4.5.1 PD 5500 and the PED ESRs 70
4.6 The ASME vessel codes 76
4.6.1 Summary 76
4.6.2 Allowable stresses 81
4.6.3 Cylindrical vessel shells 81
4.6.4 Flat plates, covers, and flanges 85
4.6.5 Vessel openings – general 90
4.6.6 Heat exchangers 91
4.6.7 Special analyses 91
4.6.8 ASME ‘intent’ 95
4.7 TRD 96
4.8 Air receivers 98
4.9 Shell boilers: BS 2790 and EN 12953 101
4.10 Canadian standards association B51-97, part 1 boiler,pressure vessel, and piping code – 1997 106
4.11 CODAP – unfired pressure vessels 107
4.12 Water tube boilers: BS 1113/pr EN 12952 107
4.13 Materials and referenced standards – quick reference 109
4.14 Pressure vessel codes – some referenced standards 111

Chapter 5 Manufacture, QA, Inspection, and Testing 113
5.1 Manufacturing methods and processes 113
5.2 Vessel visual and dimensional examinations 114
5.2.1 The vessel visual examination 114
5.2.2 The vessel dimensional check 116
5.2.3 Vessel markings 118
5.3 Misalignment and distortion 118
5.3.1 What causes misalignment and distortion? 118
5.3.2 Toleranced features 119
5.4 Pressure and leak testing 122
5.4.1 The point of a pressure test 122
5.4.2 The standard hydrostatic test 123
5.4.3 Pneumatic testing 124
5.4.4 Vacuum leak testing 125
5.5 ASME certification 126
5.5.1 The role of the AI (Authorized Inspector) 126
5.5.2 Manufacturers’ data report forms 127
5.5.3 The code symbol stamps 129
5.5.4 ASME and the European Pressure EquipmentDirective (PED) 131
5.6 European inspection terms and bodies: EN 45004: 1995 132
5.7 The role of ISO 9000 133
5.7.1 The objectives of the changes 133
5.7.2 What will the new standards be? 134
5.7.3 What are the implications? 134
5.7.4 The ‘new format’ ISO 9001: 2000 134

Chapter 6 Flanges, Nozzles, Valves, and Fittings 137
6.1 Flanges 137
6.2 Valves 141
6.2.1 Types of valves 141
6.2.2 Valve technical standards 141
6.3 Safety devices 151
6.3.1 Safety relief valves – principles of operation 152
6.3.2 Terminology – safety valves 153
6.4 Nozzles 155
6.5 Power piping – ASME/ANSI B31.1 code 158
6.6 Fittings 161
6.6.1 Pressure equipment fittings 161
6.6.2 Pipework classification 161

Chapter 7 Boilers and HRSGs 167
7.1 Fundamentals of heat transfer 167
7.1.1 Specific heat, c 167
7.1.2 Enthalpy, h 167
7.1.3 Latent heat 168
7.1.4 Steam characteristics 168
7.1.5 Gas characteristics 173
7.2 Heat recovery steam generators (HRSGs) 173
7.2.1 General description 173
7.2.2 HRSG operation 176
7.2.3 HRSG terms and definitions 180
7.2.4 HRSG materials 183

Chapter 8 Materials of Construction 185
8.1 Plain carbon steels — basic data 185
8.2 Alloy steels 185
8.3 Stainless steels – basic data 186
8.4 Non-ferrous alloys – basic data 189
8.5 Material traceability 190
8.6 Materials standards – references 192

Chapter 9 Welding and NDT 195
9.1 Weld types and symbols 195
9.2 Weld processes 195
9.3 Welding standards and procedures 203
9.4 Destructive testing of welds 205
9.4.1 Test plates 205
9.4.2 The tests 205
9.5 Non-destructive testing (NDT) techniques 209
9.5.1 Visual examination 209
9.5.2 Dye penetrant (DP) testing 209
9.5.3 Magnetic particle (MP) testing 212
9.5.4 Ultrasonic testing (UT) 213
9.5.5 Radiographic testing (RT) 219
9.6 NDT acronyms 223
9.7 NDT: vessel code applications 225
9.8 NDT standards and references 227

Chapter 10 Failure 229
10.1 How pressure equipment materials fail 229
10.1.1 LEFM method 230
10.1.2 Multi-axis stresses states 231
10.2 Fatigue 232
10.2.1 Typical pressure equipment material fatigue limits 233
10.2.2 Fatigue strength – rules of thumb 234
10.3 Creep 235
10.4 Corrosion 238
10.4.1 Types of corrosion 238
10.4.2 Useful references 241
10.5 Boiler failure modes 241
10.6 Failure-related terminology 244

Chapter 11 Pressure Equipment: Directives and Legislation 249
11.1 Introduction: what’s this all about? 249
11.1.1 The driving forces 249
11.1.2 The EU ‘new approaches’ 250
11.2 The role of technical standards 250
11.2.1 Harmonized standards 250
11.2.2 National standards 251
11.2.3 The situation for pressure equipment 251
11.3 Vessel ‘statutory’ certification 253
11.3.1 Why was certification needed? 253
11.3.2 What was certification? 253
11.3.3 Who could certificate vessels? 254
11.4 The CE mark – what is it? 255
11.5 Simple pressure vessels 255
11.6 The simple pressure vessels directive and regulations 256
11.6.1 SPVs – summary 256
11.6.2 Categories of SPVs 257
11.6.3 SPV harmonized standards 264
11.7 Transportable pressure receptacles: legislation and regulations 265
11.7.1 TPRs legislation 265
11.8 The pressure equipment directive (PED) 97/23/EC 271
11.8.1 PED summary 271
11.8.2 PED – its purpose 273
11.8.3 PED – its scope 273
11.8.4 PED – its structure 274
11.8.5 PED – conformity assessment procedures 275
11.8.6 Essential safety requirements (ESRs) 294
11.8.7 Declaration of conformity 311
11.8.8 Pressure equipment marking 312
11.9 Pressure Equipment Regulations 1999 312
11.9.1 The Pressure Equipment regulations – structure 312
11.10 Notified Bodies 314
11.10.1 What are they? 314
11.10.2 UK Notified Bodies 314
11.11 Sources of information 317
11.11.1 Pressure system safety – general 317
11.11.2 Transportable pressure receptacles (gas cylinders) 318
11.11.3 The simple pressure vessel directive/regulations 318
11.11.4 The pressure equipment directive 318
11.11.5 The pressure equipment regulations 319
11.11.6 PSSRs and written schemes 319

Chapter 12 In-service Inspection 321
12.1 A bit of history 321
12.2 The Pressure Systems Safety Regulations (PSSRs) 2000 322

Chapter 13 References and Information Sources 325
13.1 European Pressure Equipment Research Council (EPERC) 325
13.2 European and American associations and organizations relevant to pressure equipment activities 327
13.3 Pressure vessel technology references 335
Appendix 1 Steam Properties Data 337
Appendix 2 Some European Notified Bodies (PED) 343
Notified Bodies (PED Article 12) 343
Recognized Third-Party Organizations (PED Article 13) 348
Appendix 3 Standards and Directives Current Status 351
Index 383




Download

Read more...

Duct Design and Installation
















Download 

mirror

http://www.4shared.com/rar/ddG94ZBQ/duct_design.html

Read more...

ELECTRICAL ENGINEERING CATHODIC PROTECTION

Saturday, March 13, 2010


















Section 1 INTRODUCTION
1.1 Scope. ........................... 1
1.2 Cancellation. ........................ 1
1.3 Related Technical Documents. ................ 1
Section 2 CATHODIC PROTECTION CONCEPTS
2.1 Corrosion as an Electrochemical Process. .......... 3
2.1.1 Driving Force. ....................... 3
2.1.2 The Electrochemical Cell. .................. 3
2.1.2.1 Components of the Electrochemical Cell. ........... 3
2.1.2.2 Reactions in an Electrochemical Cell. ............ 3
2.2 The Electrochemical Basis for Cathodic Protection. ...... 4
2.2.1 Potentials Required for Cathodic Protection. ........ 4
2.3 Practical Application of Cathodic Protection. ........ 5
2.3.1 When Cathodic Protection Should Be Considered. ....... 5
2.3.1.1 Where Feasible. ....................... 5
2.3.1.2 When Indicated By Experience. ................ 5
2.3.1.3 As Required By Regulation. ................. 5
2.3.2 Functional Requirements for Cathodic Protection ....... 8
2.3.2.1 Continuity. ......................... 8
2.3.2.2 Electrolyte. ........................ 8
2.3.2.3 Source of Current. ..................... 8
2.3.2.4 Connection to Structure. .................. 8
2.4 Sacrificial Anode Systems. ................. 8
2.4.1 Anode Materials. ...................... 9
2.4.2 Connection to Structure. .................. 10
2.4.3 Other Requirements. ..................... 10
2.5 Impressed Current Systems. ................. 10
2.5.1 Anode Materials. ...................... 10
2.5.2 Direct Current Power Source. ................ 10
2.5.3 Connection to Structure. .................. 10
2.5.4 Other Requirements. ..................... 11

Read more...

Design, Construction, and Operation SMALL WASTEWATER SYSTEMS

Wednesday, March 10, 2010




Chapter 1
Introduction
Purpose 1-1
Applicability 1-2
References 1-3
Distribution Statement 1-4
Laws and Regulations 1-5

Chapter 2
Preliminary Data Requirements General 2-1
Recreational Facilities 2-2
Determination of Effluent Limitations 2-3
Site Selection Factors 2-4

Chapter 3
Wastewater Generation and Characterization General 3-1
Visitation and Length of Stay 3-2
Variations in Visitation 3-3
Water Usage and Wastewater Generation 3-4
Monthly and Daily Flow Distribution 3-5
Wastewater Characterization 3-6

Chapter 4
Collection Systems General 4-1
Absence of Pressurized Water Supply 4-2
Transport by Truck 4-3
Gravity Flow Systems 4-4
Force Main Systems 4-5
Alternative Wastewater Collection Systems 4-6

Chapter 5
Treatment Design Considerations General 5-1
Small Individual Units 5-2
Conventional Wastewater Treatment Facilities 5-3
Stabilization Ponds 5-4
Natural Systems for Wastewater Treatment 5-5
Man-Made Wetlands 5-6
Nutrient Removal 5-7
Sludge Treatment and Disposal 5-8
Disinfection of Wastewater Effluents 5-9

Chapter 6
Laboratory Design, Sampling, and Flow Monitoring General 6-1
Laboratory Design 6-2
Sampling and Analysis 6-3
Flow Monitoring 6-4

Chapter 7
Treatment Process Selection Overview 7-1
Site Visitation 7-2
Local Resources 7-3
Economic Considerations 7-4
Health Considerations 7-5
Aesthetic Considerations 7-6
Safety Considerations 7-7
Access/Security Considerations 7-8
Comparison of Treatment Processes 7-9

Chapter 8
Design References and Examples General 8-1
Military Design Manuals 8-2
National Small Flows Clearinghouse (NSFC) Publications 8-3
Wastewater Design Manuals and Texts 8-4
U.S. Environmental Protection Agency (EPA) 8-5
Wastewater Design Criteria and Example Matrices 8-6
Additional Design Examples 8-7

Chapter 9
General Wastewater System Design Deficiencies General 9-1
Overall Considerations 9-2
Conventional Design 9-3
Preliminary Unit Processes 9-4
Primary Treatment Unit Process 9-5
Secondary Treatment Unit Processes 9-6
Sludge Dewatering 9-7
Non-Conventional Plants 9-8
Land Application 9-9
Sludge Drying and Disposal 9-10
Sewer Collection Systems 9-11
Lift Stations 9-12

Chapter 10
Sludge Disposal General 10-1
Definitions 10-2
Management Standards 10-3
Toxic Metal Regulations 10-4
Effect of Land Application 10-5
Pathogen and Vector Attraction Reduction 10-6
Exclusions 10-7
Land Application Pollutant Limits 10-8
Land Application Management Practices 10-9
Surface Disposal Pollutant Limits 10-10
Pathogens and Vector Attraction Reduction 10-11
Pathogen Treatment Processes 10-12
Septage Applied to Agricultural Land, Forests, or Reclamation Sites 10-13
Wastewater Scum 10-14
Composting Methods 10-15
Composting Additives/Amendments/Bulking Agents 10-16
Equipment 10-17
Guidance 10-18

Total 7 MB 200 Page
Download

Read more...

Guidelines To Gas Tungsten Arc Welding (GTAW)





















SECTION 1 - SAFETY1

SECTION 2 - THE TIG PROCESS2
2-1.What Is TIG2
2-2.GTAW (TIG) Connections 2
2-3.TIG Advantages 3
2-4.TIG Disadvantages 3
2-5.AC Sine Wave 4
2-6.Zero Crossover Area 4
2-7.Squarewave Imposed Over A Sinewave 5
2-8.Conventional Squarewave AC 5

SECTION 3 - ARC SHAPING CAPABILITIES 6
3-1.Arc Starting Methods 6
3-2.Balance Control 6
3-3.AC Frequency Adjustment Control 7
3-4.Amperage Adjust Control 7
3-5.Frequency Adjustment Control - 60 Hz8
3-6.Frequency Adjustment Control - 200 Hz8
3-7.Suggested Inverter Power Source Starting Parameters For Various Alumunium joints
3-8.Suggested Inverter Power Source Starting Parameters For Various

SECTION 4 - TUNGSTEN SELECTION AND PREPARATION11
4-1.Safety Information And Selecting Tungsten Electrodes 11
4-2.Selecting A Tungsten Electrode 11
4-3.Proper Tungsten Preparation 11
4-4.More About Tungsten Preparation 12
4-5.Tungsten Shape For AC Sine Wave & Conventional Squarewave 13
4-6.Tungsten Shape For Inverter AC & DC 13

SECTION 5 - TIG SHIELDING GASES 14
5-1.TIG Shielding Gases 14
5-2.Argon vs. Helium 14
5-3.Argon/Helium Mixes 15

SECTION 6 - GUIDELINES FOR GTAW WELDING (TIG) 16
6-1.Lift-Arc And HF TIG Start Procedures 16

20 pages 2.6 Mb
Download

Read more...

ELECTRICAL ENGINEERING CATHODIC PROTECTION

Friday, March 5, 2010






Section 1 INTRODUCTION
1.1 Scope. ........................... 1
1.2 Cancellation. ........................ 1
1.3 Related Technical Documents. ................ 1
Section 2 CATHODIC PROTECTION CONCEPTS
2.1 Corrosion as an Electrochemical Process. .......... 3
2.1.1 Driving Force. ....................... 3
2.1.2 The Electrochemical Cell. .................. 3
2.1.2.1 Components of the Electrochemical Cell. ........... 3
2.1.2.2 Reactions in an Electrochemical Cell. ............ 3
2.2 The Electrochemical Basis for Cathodic Protection. ...... 4
2.2.1 Potentials Required for Cathodic Protection. ........ 4
2.3 Practical Application of Cathodic Protection. ........ 5
2.3.1 When Cathodic Protection Should Be Considered. ....... 5
2.3.1.1 Where Feasible. ....................... 5
2.3.1.2 When Indicated By Experience. ................ 5
2.3.1.3 As Required By Regulation. ................. 5
2.3.2 Functional Requirements for Cathodic Protection ....... 8
2.3.2.1 Continuity. ......................... 8
2.3.2.2 Electrolyte. ........................ 8
2.3.2.3 Source of Current. ..................... 8
2.3.2.4 Connection to Structure. .................. 8
2.4 Sacrificial Anode Systems. ................. 8
2.4.1 Anode Materials. ...................... 9
2.4.2 Connection to Structure. .................. 10
2.4.3 Other Requirements. ..................... 10
2.5 Impressed Current Systems. ................. 10
2.5.1 Anode Materials. ...................... 10
2.5.2 Direct Current Power Source. ................ 10
2.5.3 Connection to Structure. .................. 10
2.5.4 Other Requirements. ..................... 11

Section 3 CRITERIA FOR CATHODIC PROTECTION
3.1 Introduction. ........................ 13
3.2 Electrical Criteria. .................... 13
3.3 Interpretation of Structure-to-Electrolyte
Potential Readings. ..................... 13
3.3.1 National Association of Corrosion Engineers (NACE)Standard RP-01-69. ......... 13
3.3.1.1 Criteria for Steel. ..................... 15
3.3.1.2 Criteria for Aluminum. ................... 15
3.3.1.3 Criteria for Copper. .................... 15
3.3.1.4 Criteria for Dissimilar Metal Structures. .......... 15
3.3.2 Other Electrical Criteria. ................. 15
3.3.2.1 Criteria for Lead. ..................... 16
3.3.2.2 NACE RP-02-85. ....................... 16
3.4 Failure Rate Analysis. ................... 16
3.5 Nondestructive Testing of Facility. ............. 16
3.5.1 Visual Analysis. ...................... 16
3.6 Consequences of Underprotection. .............. 17
3.7 Consequences of Overprotection. ............... 18
3.7.1 Coating Disbondment. .................... 18
3.7.2 Hydrogen Embrittlement. ........... ........ 18

Section 4 CATHODIC PROTECTION SYSTEM DESIGN PRINCIPLES
4.1 Introduction. ........................ 19
4.2 General Design Procedures. ................. 19
4.2.1 Drawings and Specifications. ................ 19
4.2.1.1 Drawings and Specifications for the Structure to be Protected. ...... 19
4.2.1.2 Site Drawings. ....................... 19
4.2.2 Field Surveys. ....................... 20
4.2.2.1 Water Analysis. ....................... 20
4.2.2.2 Soil Characteristics. .................... 20
4.2.2.3 Current Requirement Tests. ................. 21
4.2.2.4 Location of Other Structures in the Area. .......... 22
4.2.2.5 Availability of ac Power. .................. 22
4.2.3 Current Requirements. .................... 22
4.2.4 Choice of Sacrificial or Impressed Current System. ...... 22
4.2.5 Basic Design Procedure for Sacrificial Anode Systems. ... 23
4.2.6 Basic Design Procedure for Impressed Current Systems. .... 24
4.2.6.1 Total Current Determination. ................ 24
4.2.6.2 Total Resistance Determination. ............... 26
4.2.6.3 Voltage and Rectifier Determination. ............ 27
4.2.7 Analysis of Design Factors. ................. 28
4.3 Determination of Field Data. ................ 28
4.3.1 Determination of Electrolyte Resistivity .......... 29
4.3.1.1 In Soils. .......................... 29
4.3.1.2 Liquids. .......................... 29
4.3.2 Chemical Analysis of the Environment ............ 31
4.3.2.1 pH. ............................. 31
4.3.3 Coating Conductance. .................... 31
4.3.3.1 Short Line Method. ..................... 33
4.3.3.2 Long Line Method. ...................... 33
4.3.4 Continuity Testing. ..................... 35
4.3.4.1 Method 1. .......................... 35
4.3.4.2 Method 2. .......................... 35
4.3.4.3 Method 3. .......................... 35
4.3.5 Insulation Testing. ..................... 35
4.3.5.1 Buried Structures. ..................... 35
4.3.5.2 Aboveground Structures. ................... 38
4.4 Corrosion Survey Checklist. ................. 38

Section 5 PRECAUTIONS FOR CATHODIC PROTECTION SYSTEM DESIGN
5.1 Introduction. ........................ 39
5.2 Excessive Currents and Voltages. .............. 39
5.2.1 Interference. ........................ 39
5.2.1.1 Detecting Interference. ................... 41
5.2.1.2 Control of Interference - Anode Bed Location. ........ 43
5.2.1.3 Control of Interference - Direct Bonding. .......... 43
5.2.1.4 Control of Interference - Resistive Bonding. ........ 45
5.2.1.5 Control of Interference - Sacrificial Anodes. ........ 47
5.2.2 Effects of High Current Density. .............. 47
5.2.3 Effects of Electrolyte pH. ................. 47
5.3 Hazards Associated with Cathodic Protection. ........ 49
5.3.1 Explosive Hazards. ..................... 49
5.3.2 Bonding for Electrical Safety. ............... 49
5.3.3 Induced Alternating Currents. . ............... 50

Section 6 IMPRESSED CURRENT SYSTEM
6.1 Advantages of Impressed Current Cathodic Protection Systems. .... 53
6.2 Determination of Circuit Resistance. ............ 53
6.2.1 Anode-to-Electrolyte Resistance. .............. 53
6.2.1.1 Effect on System Design and Performance. .......... 53
6.2.1.2 Calculation of Anode-to-Electrolyte Resistance ....... 54
6.2.1.3 Basic Equations ....................... 54
6.2.1.4 Simplified Expressions for Common Situations. ........ 55
6.2.1.5 Field Measurement. ..................... 57
6.2.1.6 Effect of Backfill. ..................... 58
6.2.2 Structure-to-Electrolyte Resistance. ............ 59
6.2.3 Connecting Cable Resistance. ................ 59
6.2.4 Resistance of Connections and Splices. ........... 59
6.3 Determination of Power Supply Requirements. ......... 59
6.4 Selection of Power Supply Type. ............... 60
6.4.1 Rectifiers. ......................... 60
6.4.2 Thermoelectric Generators. ................. 60
6.4.3 Solar. ........................... 60
6.4.4 Batteries. ......................... 60
6.4.5 Generators. ......................... 60
6.5 Rectifier Selection. .................... 60
6.5.1 Rectifier Components. .................... 61
6.5.1.1 Transformer Component. ................... 61
6.5.1.2 Rectifying Elements. .................... 61
6.5.1.3 Overload Protection. .................... 61
6.5.1.4 Meters. ........................... 63
6.5.2 Standard Rectifier Types .................. 63
6.5.2.1 Single-Phase Bridge. .................... 63
6.5.2.2 Single-Phase Center Tap. .................. 63
6.5.2.3 Three-Phase Bridge. ..................... 63
6.5.2.4 Three-Phase Wye. ...................... 65
6.5.2.5 Special Rectifier Types ................... 65
6.5.3 Rectifier Selection and Specifications. ........... 68
6.5.3.1 Available Features. ..................... 69
6.5.3.2 Air Cooled Versus Oil Immersed. ............... 69
6.5.3.3 Selecting ac Voltage. .................... 70
6.5.3.4 dc Voltage and Current Output. ............... 70
6.5.3.5 Filters. .......................... 70
6.5.3.6 Explosion Proof Rectifiers. ................. 70
6.5.3.7 Lightning Arresters. .................... 71
6.5.3.8 Selenium Versus Silicon Stacks. ............... 71
6.5.3.9 Other Options. ....................... 71
6.5.3.10 Rectifier Alternating Current Rating. ............ 71
6.6 Anodes for Impressed Current Systems. ............ 73
6.6.1 Graphite Anodes. ...................... 74
6.6.1.1 Specifications. ....................... 74
6.6.1.2 Available Sizes. ...................... 74
6.6.1.3 Characteristics. ...................... 77
6.6.1.4 Operation. ......................... 77
6.6.2 High Silicon Cast Iron. ................... 78
6.6.3 High Silicon Chromium Bearing Cast Iron (HSCBCI). .... 78
6.6.3.1 Specifications. ....................... 78
6.6.3.2 Available Sizes. ...................... 79
6.6.3.3 Operation. ......................... 79
6.6.4 Aluminum. .......................... 79
6.6.5 Platinum. .......................... 79
6.6.6 Platinized Anodes. ..................... 79
6.6.6.1 Types. ........................... 90
6.6.6.2 Operation. ......................... 91
6.6.7 Alloyed Lead. ........................ 91
6.7 Other System Components. .................. 91
6.7.1 Connecting Cables. ..................... 91
6.7.1.1 Factors to be Considered. .................. 91
6.7.1.2 Insulation. ......................... 92
6.7.1.3 Recommended Cables for Specific Applications. ........ 93
6.7.1.4 Economic Wire Size. ..................... 93
6.7.2 Wire Splices and Connections. ................ 94
6.7.3 Test Stations. ....................... 96
6.7.4 Bonds. ........................... 96
6.7.5 Insulating Joints. ................ ..... 96

Section 7 SACRIFICIAL ANODE SYSTEM DESIGN
7.1 Theory of Operation. ................... . 113
7.1.1 Advantages of Sacrificial Anode Cathodic Protection Systems. .... . 113
7.1.2 Disadvantages of Sacrificial Anode Cathodic Protection Systems. ..... . 113
7.2 Sacrificial Anode Cathodic Protection System DesignProcedures. ...... . 113
7.3 Determination of Current Required for Protection. ...................... . 114
7.4 Determination of Anode Output. .............. . 114
7.4.1 Simplified Method for Common Situations. ......... . 114
7.4.2 Determination of Output Using Anode-to-Electrolyte Resistance. ... . 114
7.4.2.1 Calculation of Anode-to-Electrolyte Resistance. ...... . 114
7.4.2.2 Determination of Structure-to-Electrolyte Resistance. .. . 115
7.4.2.3 Connecting Cable Resistance. ............... . 115
7.4.2.4 Resistance of Connections and Splices. .......... . 115
7.4.2.5 Total Circuit Resistance. ................. . 115
7.4.2.6 Anode-to-Structure Potential. ............... . 115
7.4.2.7 Anode Output Current. ................... . 115
7.4.3 Field Measurement of Anode Output. ............ . 116
7.5 Determination of Number of Anodes Required. ........ . 116
7.6 Determination of Anode Life. ............... . 116
7.7 Seasonal Variation in Anode Output. ............ . 117
7.8 Sacrificial Anode Materials ................ . 117
7.8.1 Magnesium. ........................ . 117
7.8.1.1 Composition. ....................... . 118
7.8.1.2 Anode Efficiency. ..................... . 118
7.8.1.3 Potentials. ........................ . 119
7.8.1.4 Sizes. .......................... . 119
7.8.1.5 Current Output. ...................... . 119
7.8.1.6 Backfill. ......................... . 119
7.8.2 Zinc. ........................... . 119
7.8.2.1 Composition. ....................... . 125
7.8.2.2 Anode Efficiency. ..................... . 125
7.8.2.3 Potentials. ........................ . 125
7.8.2.4 Sizes. .......................... . 126
7.8.2.5 Current Output. ...................... . 126
7.8.2.6 Backfill. ......................... . 126
7.8.3 Aluminum. ......................... . 126
7.8.3.1 Composition. ....................... . 127
7.8.3.2 Anode Efficiency. ..................... . 127
7.8.3.3 Potentials. ........................ . 127
7.8.3.4 Sizes. .......................... . 127
7.8.3.5 Current Output. ...................... . 127
7.9 Other System Components .................. . 127
7.9.1 Connecting Wires. ..................... . 127
7.9.1.1 Determination of Connecting Wire Size and Type. ...... . 133
7.9.2 Connections and Splices. ................. . 134
7.9.3 Bonds and Insulating Joints. ............... . 134
7.9.4 Test Station Location and Function. ............ . 134
7.9.5 Backfill. ......................... . 135

Section 8 TYPICAL CATHODIC PROTECTION
8.1 Diagrams of Cathodic Protection Systems. ......... . 137

Section 9 CATHODIC PROTECTION SYSTEM DESIGN EXAMPLES
9.1 Introduction. ....................... . 155
9.2 Elevated Steel Water Tank. ................ . 155
9.2.1 Design Data ........................ . 156
9.2.2 Computations ....................... . 156
9.3 Elevated Water Tank (Where Ice is Expected). ....... . 173
9.3.1 Design Data ........................ . 176
9.3.2 Computations ....................... . 176
9.4 Steel Gas Main. ...................... . 177
9.4.1 Design Data ........................ . 180
9.4.2 Computations ....................... . 180
9.5 Gas Distribution System. ................. . 184
9.5.1 Design Data ........................ . 185
9.5.2 Computations ....................... . 185

Page
9.6 Black Iron, Hot Water Storage Tank. ............ . 187
9.6.1 Design Data ........................ . 188
9.6.2 Computations ....................... . 188
9.7 Underground Steel Storage Tank. .............. . 190
9.7.1 Design Data ........................ . 190
9.7.2 Computations ....................... . 192
9.8 Heating Distribution System. ............... . 192
9.8.1 Design Data ........................ . 192
9.8.2 Computations ....................... . 193
9.8.3 Groundbed Design ..................... . 194
9.8.4 Rectifier Location. .................... . 195
9.9 Aircraft Multiple Hydrant Refueling System. ........ . 195
9.9.1 Design Data ........................ . 195
9.9.2 Computations. ....................... . 196
9.10 Steel Sheet Piling in Seawater (Galvanic nodes). ..... . 199
9.10.1 Design Data ........................ . 199
9.10.2 Computations ....................... . 201
9.11 Steel Sheet Piling in Seawater (Impressed Current
9.11.1 Design Data. ....................... . 203
9.11.2 Computations ....................... . 203
9.12 Steel H Piling in Seawater (Galvanic Anodes). ....... . 207
9.12.1 Design Data ........................ . 208
9.12.2 Computations ....................... . 208
9.13 Steel H Piling in Seawater (Impressed Current). ...... . 210
9.13.1 Design Data ........................ . 210
9.13.2 Computations ....................... . 210

Section 10 INSTALLATION AND CONSTRUCTION PRACTICES
10.1 Factors to Consider. ................... . 213
10.2 Planning of Construction. ................. . 213
10.3 Pipeline Coating. ..................... . 213
10.3.1 Over-the-Ditch Coating. .................. . 213
10.3.2 Yard Applied Coating. ................... . 213
10.3.3 Joint and Damage Repair. ................. . 214
10.3.4 Inspection. ........................ . 214
10.4 Coatings for Other Structures. .............. . 214
10.5 Pipeline Installation. .................. . 214
10.5.1 Casings. ......................... . 214
10.5.2 Foreign Pipeline Crossings. ................ . 215
10.5.3 Insulating Joints. .................... . 215
10.5.4 Bonds. .......................... . 216
10.6 Electrical Connections. .................. . 216
10.7 Test Stations. ...................... . 216
10.8 Sacrificial Anode Installation. .............. . 216
10.8.1 Vertical. ......................... . 216
10.8.2 Horizontal. ........................ . 217
10.9 Impressed Current Anode Installation. ........... . 217
10.9.1 Vertical. ......................... . 219
10.9.2 Horizontal. ........................ . 219
10.9.3 Deep Anode Beds. ..................... . 219
10.9.4 Other Anode Types. .................... . 225
10.9.5 Connections. ....................... . 225
Page
10.10 Impressed Current Rectifier Installation. ......... . 225
Section 11 SYSTEM CHECKOUT AND INITIAL ADJUSTMENTS
11.1 Introduction. ....................... . 229
11.2 Initial Potential Survey. ................. . 229
11.3 Detection and Correction of Interference. ......... . 229
11.4 Adjustment of Impressed Current Systems. ......... . 229
11.4.1 Uneven Structure-To-Electrolyte Potentials. ........ . 229
11.4.2 Rectifier Voltage and Current Capacity. .......... . 230
11.5 Adjustment of Sacrificial Anode Systems. ......... . 230
11.5.1 Low Anode Current Levels. ................. . 230
11.5.2 Inadequate Protection at Designed Current Levels ..... . 230

Section 12 MAINTAINING CATHODIC PROTECTION
12.1 Introduction. ....................... . 231
12.2 Required Periodic Monitoring and Maintenance. ....... . 231
12.3 Design Data Required for System Maintenance. ....... . 231
12.3.1 Drawings. ......................... . 231
12.3.2 System Data. ....................... . 231
12.3.2.1 Design Potentials. .................... . 231
12.3.2.2 Current Output. ...................... . 231
12.3.2.3 System Settings and Potential Readings. .......... . 231
12.3.2.4 Rectifier Instructions. .................. . 232
12.4 Basic Maintenance Requirements. .............. . 232
12.5 Guidance for Maintenance ................. . 232
12.5.1 Agency Maintenance and Operations Manuals. ........ . 232
12.5.2 DOT Regulations. ..................... . 235
12.5.3 NACE Standards. ...................... . 235

Section 13 ECONOMIC ANALYSIS
13.1 Importance of Economic Analysis. ............. . 237
13.2 Economic Analysis Process. ................ . 237
13.2.1 Define the Objective. ................... . 237
13.2.2 Generate Alternatives. .................. . 238
13.2.3 Formulate Assumptions. .................. . 238
13.2.4 Determine Costs and Benefits. ............... . 238
13.2.4.1 Costs. .......................... . 238
13.2.4.2 Benefits. ......................... . 239
13.2.5 Compare Costs and Benefits and Rank Alternatives. .... . 239
13.2.6 Perform Sensitivity Analysis. ............... . 239
13.3 Design of Cathodic Protection Systems. .......... . 239
13.4 Economic Analysis - Example 1 ............... . 240
13.4.1 Objective. ........................ . 240
13.4.2 Alternatives ....................... . 240
13.4.3 Assumptions ........................ . 240
13.4.4 Cost/Benefit Analysis ................... . 240
13.4.4.1 Cost - Alternative 1--Steel Line Without Cathodic Protection. ... . 240
13.4.4.2 Cost - Alternative 2--Steel Line with Cathodic Protection. ......... . 242
13.4.4.3 Cost - Alternative 3--Plastic Line. ............ . 242
13.4.4.4 Benefits. ......................... . 243
13.4.5 Compare Costs/Benefits .................. . 243
13.5 Economic Analysis - Example 2 ............... . 243
13.5.1 Objective. ........................ . 243
13.5.2 Alternative ........................ . 243
13.5.3 Assumptions ........................ . 243
13.5.4 Cost/Benefit Analysis ................... . 244
13.5.4.1 Cost - Alternative 1--Steel Line Without Cathodic Protection. ... . 244
13.5.4.2 Cost - Alternative 2--Steel Line With Cathodic Protection. ....... . 245
13.5.4.3 Benefits. ......................... . 246
13.5.5 Compare Costs/Benefits .................. . 246
13.5.6 Conclusions and Recommendations. ............. . 247
13.6 Economic Analysis - Example 3 ............... . 247
13.6.1 Objective. ........................ . 247
13.6.2 Alternatives ....................... . 247
13.6.3 Assumptions ........................ . 247
13.6.4 Cost/Benefit Analysis ................... . 247
13.6.4.1 Cost - Alternative 1--Impressed Current Cathodic Protection. ... . 247
13.6.4.2 Cost - Alternative 2--Galvanic Anode System. ....... . 248
13.6.5 Compare Costs/Benefits .................. . 249
13.7 Economic Analysis - Example 4 ............... . 249
13.7.1 Objective ......................... . 249
13.7.2 Alternatives ....................... . 249
13.7.3 Assumptions ........................ . 249
13.7.4 Cost/Benefit Analysis ................... . 249
13.7.4.1 Cost - Alternative 1--Cathodic Protection System Maintenance Continued. .. . 249
13.7.4.2 Cost - Alternative 2--Cathodic Protection System Maintenance Discontinued. . . 250
13.7.5 Compare Benefits and Costs ................ . 251
13.8 Economic Analysis Goal. .................. . 251

Section 14 CORROSION COORDINATING COMMITTEE PARTICIPATION
14.1 Introduction. ....................... . 253
14.2 Functions of Corrosion Coordinating Committees. ...... . 253
14.3 Operation of the Committees. ............... . 253
14.4 Locations of Committees. ................. . 253
APPENDIX
APPENDIX A UNDERGROUND CORROSION SURVEY CHECKLIST .......... . 255
B ECONOMIC LIFE GUIDELINES ................. . 265
C PROJECT YEAR DISCOUNT FACTORS ............... . 267
D PRESENT VALUE FORMULAE .................. . 269
E DOT REGULATIONS ...................... . 271

319 pages 2.2 MB

Download

Read more...

Steel Design for construction

Monday, March 1, 2010






















1 INTRODUCTION
2 PLANNING FOR CONSTRUCTION

2.1 The need to plan for construction
2.2 General principles
2.3 Management of the design process
2.4 Further reading

3 DESIGNING FOR CONSTRUCTION
3.1 Design principles
3.2 Frame types
3.3 Floor systems
3.4 Connections
3.5 Bolts
3.6 Welding and inspection
3.7 Corrosion protection
3.8 Interfaces
3.9 Further reading

4 SITE PRACTICE
4.1 General features of site practice
4.2 Erection equipment and techniques
4.3 Case study - Senator House
4.4 Further reading

5 HEALTH AND SAFETY - THE CDM REGULATIONS
5.1 The Regulations
5.2 Duties under CDM
5.3 Designer's responsibilities
5.4 Designer's response
5.5 Further reading

6 INTERFACES WITH STRUCTURAL COMPONENTS
6.1 Foundations
6.2 Concrete and masonry elements
6.3 Timber elements
6.4 Composite beams
6.5 Precast concrete floors
6.6 Crane girders and rails
6.7 Cold formed sections
6.8 Further reading

7 INTERFACES WITH NON-STRUCTURAL COMPONENTS
7.1 Services
7.2 Lift installation
7.3 Metal cladding
7.4 Curtain walling
7.5 Glazing
7.6 Brickwork restraints
7.7 Surface protection
7.8 Further reading

8 TOLERANCES
8.1 Reasons for tolerances test plan
8.2 Inspection and
8.3 Further reading

9 REFERENCES
10 CODES AND STANDARDS
APPENDIX A - Additional information
A.1 Introduction
A.2 Typical tonnages for various types of building
A.3 Case study references
A.4 Potential defects


Total 141 pages 2.5 MB

Download

Read more...
Your Ad Here

Blog Catalog

Popular Posts

  © Blogger template On The Road by Ourblogtemplates.com 2009

Back to TOP