Electronic Circuits - Fundamentals and Applications
Wednesday, February 8, 2012
Preface
This is the book that I wish I had when I first started exploring electronics nearly half a century ago. In those days, transistors were only just making their debut and integrated circuits were completely unknown. Of course, since then much has changed but, despite all of the changes, the world of electronics remains a fascinating one. And, unlike most other advanced technological disciplines, electronics is still something that you can ‘do’ at home with limited resources and with a minimal outlay. A soldering iron, a multi-meter, and a handful of components are all that you need to get started. Except, of course, for some ideas to get you started—and that’s exactly where this book comes in!
The book has been designed to help you understand how electronic circuits work. It will provide you with the basic underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits including amplifiers, logic circuits, power supplies and oscillators.
The book is ideal for people who are studying electronics for the first time at any level including a wide range of school and college courses. It is equally well suited to those who may be returning to study or who may be studying independently as well as those who may need a quick refresher. The book has 19 chapters, each dealing with a particular topic, and eight appendices containing useful information. The approach is topic-based rather than syllabus-based and each major topic looks at a particular application of electronics. The relevant theory is introduced on a progressive basis and delivered in manageable chunks.
In order to give you an appreciation of the solution of simple numerical problems related to the operation of basic circuits, worked examples have been liberally included within the text. In addition, a number of problems can be found at the end of each chapter and solutions are provided at the end of the book. You can use these end-ofchapter problems to check your understanding and also to give you some experience of the ‘short answer’ questions used in most in-course assessments. For good measure, we have included 70 revision problems in Appendix 2. At the end of the book you will find 21 sample coursework assignments. These should give you plenty of ‘food for thought’ as well as offering you some scope for further experimentation. It is not envisaged that you should complete all of these assignments and a carefully chosen selection will normally suffice. If you are following a formal course, your teacher or lecturer will explain how these should be tackled and how they can contribute to your course assessment. While the book assumes no previous knowledge of electronics you need to be able to manipulate basic formulae and understand some simple trigonometry in order to follow the numerical examples. A study of mathematics to GCSE level (or equivalent) will normally be adequate to satisfy this requirement. However, for those who may need a refresher or have had previous problems with mathematics, Appendix 6 will provide you with the underpinning mathematical knowledge required.
In the later chapters of the book, a number of representative circuits (with component values) have been included together with sufficient information to allow you to adapt and modify the circuits for your own use. These circuits can be used to form the basis of your own practical investigations or they can be combined together in more complex circuits.
Finally, you can learn a great deal from building, testing and modifying simple circuits. To do this you will need access to a few basic tools and some minimal test equipment. Your first purchase should be a simple multi-range meter, either digital or analogue. This instrument will allow you to measure the voltages and currents present so that you can compare them with the predicted values. If you are attending a formal course of instruction and have access to an electronics laboratory, do make full use of it!
A note for teachers and lecturers
The book is ideal for students following formal courses (e.g. GCSE, AS, A-level, BTEC, City and Guilds, etc.) in schools, sixth-form colleges, and further/higher education colleges. It is equally well suited for use as a text that can support distance or flexible learning and for those who may need a ‘refresher’ before studying electronics at a higher level.
While the book assumes little previous knowledge students need to be able to manipulate basic formulae and understand some simple trigonometry to follow the numerical examples. A study of mathematics to GCSE level (or beyond) will normally be adequate to satisfy this requirement.
However, an appendix has been added specifically to support students who may have difficulty with mathematics. Students will require a scientific calculator in order to tackle the end-ofchapter problems as well as the revision problems that appear at the end of the book.
We have also included 21 sample coursework assignments. These are open-ended and can be modified or extended to suit the requirements of the particular awarding body. The assignments have been divided into those that are broadly at Level 2 and those that are at Level 3. In order to give reasonable coverage of the subject, students should normally be expected to complete between four and five of these assignments. Teachers can differentiate students’ work by mixing assignments from the two levels. In order to challenge students, minimal information should be given to students at the start of each assignment. The aim should be that of giving students ‘food for thought’ and encouraging them to develop their own solutions and interpretation of the topic.
Where this text is to be used to support formal teaching it is suggested that the chapters should be followed broadly in the order that they appear with the notable exception of Chapter 14. Topics from this chapter should be introduced at an early stage in order to support formal lab work. Assuming a notional delivery time of 4.5 hours per week, the material contained in this book (together with supporting laboratory exercises and assignments) will require approximately two academic terms (i.e. 24 weeks) to deliver in which the total of 90 hours of study time should be divided equally into theory (supported by problem solving) and practical (laboratory and assignment work). The recommended four or five assignments will require about 25 to 30 hours of student work to complete. Finally, when constructing a teaching programme it is, of course, essential to check that you fully comply with the requirements of the awarding body concerning assessment and that the syllabus coverage is adequate.
Link
Download
mirror
http://www.4shared.com/office/O3krrZGI/Electronic_Circuits_-_Fundamen.html
This is the book that I wish I had when I first started exploring electronics nearly half a century ago. In those days, transistors were only just making their debut and integrated circuits were completely unknown. Of course, since then much has changed but, despite all of the changes, the world of electronics remains a fascinating one. And, unlike most other advanced technological disciplines, electronics is still something that you can ‘do’ at home with limited resources and with a minimal outlay. A soldering iron, a multi-meter, and a handful of components are all that you need to get started. Except, of course, for some ideas to get you started—and that’s exactly where this book comes in!
The book has been designed to help you understand how electronic circuits work. It will provide you with the basic underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits including amplifiers, logic circuits, power supplies and oscillators.
The book is ideal for people who are studying electronics for the first time at any level including a wide range of school and college courses. It is equally well suited to those who may be returning to study or who may be studying independently as well as those who may need a quick refresher. The book has 19 chapters, each dealing with a particular topic, and eight appendices containing useful information. The approach is topic-based rather than syllabus-based and each major topic looks at a particular application of electronics. The relevant theory is introduced on a progressive basis and delivered in manageable chunks.
In order to give you an appreciation of the solution of simple numerical problems related to the operation of basic circuits, worked examples have been liberally included within the text. In addition, a number of problems can be found at the end of each chapter and solutions are provided at the end of the book. You can use these end-ofchapter problems to check your understanding and also to give you some experience of the ‘short answer’ questions used in most in-course assessments. For good measure, we have included 70 revision problems in Appendix 2. At the end of the book you will find 21 sample coursework assignments. These should give you plenty of ‘food for thought’ as well as offering you some scope for further experimentation. It is not envisaged that you should complete all of these assignments and a carefully chosen selection will normally suffice. If you are following a formal course, your teacher or lecturer will explain how these should be tackled and how they can contribute to your course assessment. While the book assumes no previous knowledge of electronics you need to be able to manipulate basic formulae and understand some simple trigonometry in order to follow the numerical examples. A study of mathematics to GCSE level (or equivalent) will normally be adequate to satisfy this requirement. However, for those who may need a refresher or have had previous problems with mathematics, Appendix 6 will provide you with the underpinning mathematical knowledge required.
In the later chapters of the book, a number of representative circuits (with component values) have been included together with sufficient information to allow you to adapt and modify the circuits for your own use. These circuits can be used to form the basis of your own practical investigations or they can be combined together in more complex circuits.
Finally, you can learn a great deal from building, testing and modifying simple circuits. To do this you will need access to a few basic tools and some minimal test equipment. Your first purchase should be a simple multi-range meter, either digital or analogue. This instrument will allow you to measure the voltages and currents present so that you can compare them with the predicted values. If you are attending a formal course of instruction and have access to an electronics laboratory, do make full use of it!
A note for teachers and lecturers
The book is ideal for students following formal courses (e.g. GCSE, AS, A-level, BTEC, City and Guilds, etc.) in schools, sixth-form colleges, and further/higher education colleges. It is equally well suited for use as a text that can support distance or flexible learning and for those who may need a ‘refresher’ before studying electronics at a higher level.
While the book assumes little previous knowledge students need to be able to manipulate basic formulae and understand some simple trigonometry to follow the numerical examples. A study of mathematics to GCSE level (or beyond) will normally be adequate to satisfy this requirement.
However, an appendix has been added specifically to support students who may have difficulty with mathematics. Students will require a scientific calculator in order to tackle the end-ofchapter problems as well as the revision problems that appear at the end of the book.
We have also included 21 sample coursework assignments. These are open-ended and can be modified or extended to suit the requirements of the particular awarding body. The assignments have been divided into those that are broadly at Level 2 and those that are at Level 3. In order to give reasonable coverage of the subject, students should normally be expected to complete between four and five of these assignments. Teachers can differentiate students’ work by mixing assignments from the two levels. In order to challenge students, minimal information should be given to students at the start of each assignment. The aim should be that of giving students ‘food for thought’ and encouraging them to develop their own solutions and interpretation of the topic.
Where this text is to be used to support formal teaching it is suggested that the chapters should be followed broadly in the order that they appear with the notable exception of Chapter 14. Topics from this chapter should be introduced at an early stage in order to support formal lab work. Assuming a notional delivery time of 4.5 hours per week, the material contained in this book (together with supporting laboratory exercises and assignments) will require approximately two academic terms (i.e. 24 weeks) to deliver in which the total of 90 hours of study time should be divided equally into theory (supported by problem solving) and practical (laboratory and assignment work). The recommended four or five assignments will require about 25 to 30 hours of student work to complete. Finally, when constructing a teaching programme it is, of course, essential to check that you fully comply with the requirements of the awarding body concerning assessment and that the syllabus coverage is adequate.
Link
Download
mirror
http://www.4shared.com/office/O3krrZGI/Electronic_Circuits_-_Fundamen.html
1 comments:
thanks admin
for more engineering books visit : www.bookfordownload.com
Post a Comment