Chitika

Showing posts with label Electronic. Show all posts
Showing posts with label Electronic. Show all posts

Electronic Circuits - Fundamentals and Applications

Wednesday, February 8, 2012

Preface
This is the book that I wish I had when I first started exploring electronics nearly half a century ago. In those days, transistors were only just making their debut and integrated circuits were  completely unknown. Of course, since then much has changed but, despite all of the changes, the world of electronics remains a fascinating one. And, unlike most other advanced technological disciplines, electronics is still something that you can ‘do’ at home with limited resources and with a minimal outlay. A soldering iron, a multi-meter, and a handful of components are all that you need to get started. Except, of course, for some ideas to get you started—and that’s exactly where this book comes in!


 The book has been designed to help you understand how electronic circuits work. It will provide you with the basic underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits including amplifiers, logic circuits, power supplies and oscillators. 


 The book is ideal for people who are studying electronics for the first time at any level including a wide range of school and college courses. It is equally well suited to those who may be returning to study or who may be studying independently as well as those who may need a quick refresher. The book has 19 chapters, each dealing with a particular topic, and eight appendices containing useful information. The approach is topic-based rather than syllabus-based and each major topic looks at a particular application of electronics. The relevant theory is introduced on a progressive basis and delivered in manageable chunks.

 In order to give you an appreciation of the solution of simple numerical problems related to the operation of basic circuits, worked examples have been liberally included within the text. In addition, a number of problems can be found at the end of each chapter and solutions are provided at the end of the book. You can use these end-ofchapter problems to check your understanding and also to give you some experience of the ‘short answer’ questions used in most in-course assessments. For good measure, we have included 70 revision problems in Appendix 2. At the end of the book you will find 21 sample coursework assignments. These should give you plenty of ‘food for thought’ as well as offering you some scope for further experimentation. It is not envisaged that you should complete all of these assignments and a carefully chosen selection will normally suffice. If you are following a formal course, your teacher or lecturer will explain how these should be tackled and how they can contribute to your course assessment. While the book assumes no previous knowledge of electronics you need to be able to manipulate basic formulae and understand some simple trigonometry in order to follow the numerical examples. A study of mathematics to GCSE level (or equivalent) will normally be adequate to satisfy this requirement. However, for those who may need a refresher or have had previous problems with mathematics, Appendix 6 will provide you with the underpinning mathematical knowledge required.

 In the later chapters of the book, a number of representative circuits (with component values) have been included together with sufficient information to allow you to adapt and modify the circuits for your own use. These circuits can be used to form the basis of your own practical investigations or they can be combined together in more complex circuits.

 Finally, you can learn a great deal from building, testing and modifying simple circuits. To do this you will need access to a few basic tools and some minimal test equipment. Your first purchase should be a simple multi-range meter, either digital or analogue. This instrument will allow you to measure the voltages and currents present so that you can compare them with the predicted values. If you are attending a formal course of instruction and have access to an electronics laboratory, do make full use of it!

A note for teachers and lecturers 
The book is ideal for students following formal courses (e.g. GCSE, AS, A-level, BTEC, City and Guilds, etc.) in schools, sixth-form colleges, and further/higher education colleges. It is equally well suited for use as a text that can support distance or flexible learning and for those who may need a ‘refresher’ before studying electronics at a higher level.

 While the book assumes little previous knowledge students need to be able to manipulate basic formulae and understand some simple trigonometry to follow the numerical examples. A study of mathematics to GCSE level (or beyond) will normally be adequate to satisfy this requirement.

 However, an appendix has been added specifically to support students who may have difficulty with mathematics. Students will require a scientific calculator in order to tackle the end-ofchapter problems as well as the revision problems that appear at the end of the book.

 We have also included 21 sample coursework assignments. These are open-ended and can be modified or extended to suit the requirements of the particular awarding body. The assignments have been divided into those that are broadly at Level 2 and those that are at Level 3. In order to give reasonable coverage of the subject, students should normally be expected to complete between four and five of these assignments. Teachers can differentiate students’ work by mixing assignments from the two levels. In order to challenge students, minimal information should be given to students at the start of each assignment. The aim should be that of giving students ‘food for thought’ and encouraging them to develop their own solutions and interpretation of the topic.

 Where this text is to be used to support formal teaching it is suggested that the chapters should be followed broadly in the order that they appear with the notable exception of Chapter 14. Topics from this chapter should be introduced at an early stage in order to support formal lab work. Assuming a notional delivery time of 4.5 hours per week, the material contained in this book (together with supporting laboratory exercises and assignments) will require approximately two academic terms (i.e. 24 weeks) to deliver in which the total of 90 hours of study time should be divided equally into theory (supported by problem solving) and practical (laboratory and assignment work). The recommended four or five assignments will require about 25 to 30 hours of student work to complete. Finally, when constructing a teaching programme it is, of course, essential to check that you fully comply with the requirements of the awarding body concerning assessment and that the syllabus coverage is adequate. 

Link
Download

mirror

http://www.4shared.com/office/O3krrZGI/Electronic_Circuits_-_Fundamen.html
 

Read more...

Electronic Circuits,Fundamental and Applications

Monday, September 20, 2010

Content :
1. Electrical fundamentals
2. Passive components
3. D.C. circuits
4. Alternating voltage and current
5. Semiconductore
6. Power Supplies
7. Amplifiers
8. Operational amplifiers
9. Oscilators
10. Logic circuits

Download 
mirror
http://www.4shared.com/office/O3krrZGI/Electronic_Circuits_-_Fundamen.html

Read more...

Teach Yourself Electricity & Electronics

Friday, October 30, 2009



Part 1 Direct current
1 Basic physical concepts 3
Atoms 3
Protons, neutrons, and the atomic number 4
Isotopes and atomic weights 4
Electrons 5
Ions 5
Compounds 9
Molecules 10
Conductors 11
Insulators 11
Resistors 13
Semiconductors 14
Current 15
Static electricity 15
Electromotive force 16
Nonelectrical energy 18
Quiz 19

2 Electrical units 23
The volt 23
Current flow 24
The ampere 26
Resistance and the ohm 26
Conductance and the siemens 28
Power and the watt 29
Energy and the watt hour 31
Other energy units 33
ac Waves and the hertz 34
Rectification and fluctuating direct current 35
Safety considerations in electrical work 37
Magnetism 38
Magnetic units 39
Quiz 40

3 Measuring devices 44
Electromagnetic deflection 44
Electrostatic deflection 46
Thermal heating 47
Ammeters 48
Voltmeters 49
Ohmmeters 51
Multimeters 53
FET and vacuum-tube voltmeters 54
Wattmeters 54
Watt-hour meters 55
Digital readout meters 56
Frequency counters 57
Other specialized meter types 57
Quiz 60

4 Basic dc circuits 65
Schematic symbols 65
Schematic diagrams 67
Wiring diagrams 68
Voltage/current/resistance circuit 68
Ohm’s Law 69
Current calculations 69
Voltage calculations 71
Resistance calculations 71
Power calculations 72
Resistances in series 73
Resistances in parallel 74
Division of power 75
Resistances in series-parallel 75
Resistive loads in general 77
Quiz 77

5 Direct-current circuit analysis 82
Current through series resistances 82
Voltages across series resistances 83
Voltage across parallel resistances 85
Currents through parallel resistances 86
Power distribution in series circuits 88
Power distribution in parallel circuits 88
Kirchhoff’s first law 89
Kirchhoff’s second law 91
Voltage divider networks 92
Quiz 95

6 Resistors 99
Purpose of the resistor 99
The carbon-composition resistor 102
The wirewound resistor 103
Film type resistors 104
Integrated-circuit resistors 104
The potentiometer 105
The decibel 107
The rheostat 109
Resistor values 110
Tolerance 110
Power rating 110
Temperature compensation 111
The color code 112
Quiz 114

7 Cells and batteries 118
Kinetic and potential energy 118
Electrochemical energy 118
Primary and secondary cells 119
The Weston standard cell 120
Storage capacity 120
Common dime-store cells and batteries 122
Miniature cells and batteries 124
Lead-acid cells and batteries 125
Nickel-cadmium cells and batteries 125
Photovoltaic cells and batteries 127
How large a battery? 128
Quiz 130

8 Magnetism 134
The geomagnetic field 134
Magnetic force 135
Electric charge in motion 136
Flux lines 136
Magnetic polarity 137
Dipoles and monopoles 139
Magnetic field strength 139
Permeability 142
Retentivity 142
Permanent magnets 143
The solenoid 144
The dc motor 145
Magnetic data storage 146
Quiz 149
Test: Part 1 153
Part 2 Alternating current

9 Alternating current basics 165
Definition of alternating current 165
Period and frequency 165
The sine wave 167
The square wave 167
Sawtooth waves 167
Complex and irregular waveforms 169
Frequency spectrum 170
Little bits of a cycle 172
Phase difference 173
Amplitude of alternating current 173
Superimposed direct current 175
The ac generator 176
Why ac? 178
Quiz 178

10 Inductance 183
The property of inductance 183
Practical inductors 184
The unit of inductance 185
Inductors in series 185
Inductors in parallel 186
Interaction among inductors 187
Effects of mutual inductance 188
Air-core coils 189
Powdered-iron and ferrite cores 190
Permeability tuning 190
Toroids 190
Pot cores 192
Filter chokes 192
Inductors at audio frequency 193
Inductors at radio frequency 193
Transmission-line inductors 193
Unwanted inductances 195
Quiz 195

11 Capacitance 199
The property of capacitance 199
Practical capacitors 201
The unit of capacitance 201
Capacitors in series 202
Capacitors in parallel 203
Dielectric materials 204
Paper capacitors 204
Mica capacitors 205
Ceramic capacitors 205
Plastic-film capacitors 206
Electrolytic capcitors 206
Tantalum capacitors 206
Semiconductor capacitors 207
Variable capacitors 207
Tolerance 209
Temperature coefficient 210
Interelectrode capacitance 210
Quiz 211

12 Phase 215
Instantaneous voltage and current 215
Rate of change 216
Sine waves as circular motion 217
Degrees of phase 218
Radians of phase 221
Phase coincidence 221
Phase opposition 222
Leading phase 222
Lagging phase 224
Vector diagrams of phase relationships 225
Quiz 226

13 Inductive reactance 231
Coils and direct current 231
Coils and alternating current 232
Reactance and frequency 233
Points in the RL plane 234
Vectors in the RL plane 235
Current lags voltage 237
Inductance and resistance 238
How much lag? 240
Quiz 243

14 Capacitive reactance 247
Capacitors and direct current 247
Capacitors and alternating current 248
Reactance and frequency 249
Points in the RC plane 251
Vectors in the RC plane 253
Current leads voltage 254
How much lead? 256
Quiz 259

15 Impedance and admittance 264
Imaginary numbers 264
Complex numbers 265
The complex number plane 266
The RX plane 269
Vector representation of impedance 270
Absolute-value impedance 272
Characteristic impedance 272
Conductance 275
Susceptance 275
Admittance 276
The GB plane 277
Vector representation of admittance 279
Why all these different expressions? 279
Quiz 280

16 RLC circuit analysis 284
Complex impedances in series 284
Series RLC circuits 288
Complex admittances in parallel 289
Parallel GLC circuits 292
Converting from admittance to impedance 294
Putting it all together 294
Reducing complicated RLC circuits 295
Ohm’s law for ac circuits 298
Quiz 301

17 Power and resonance in ac circuits 305
What is power? 305
True power doesn’t travel 307
Reactance does not consume power 308
True power, VA power and reactive power 309
Power factor 310
Calculation of power factor 310
How much of the power is true? 313
Power transmission 315
Series resonance 318
Parallel resonance 319
Calculating resonant frequency 319
Resonant devices 321
Quiz 323

18 Transformers and impedance matching 327
Principle of the transformer 327
Turns ratio 328
Transformer cores 329
Transformer geometry 330
The autotransformer 333
Power transformers 334
Audio-frequency transformers 336
Isolation transformers 336
Impedance-transfer ratio 338
Radio-frequency transformers 339
What about reactance? 341
Quiz 342
Test: Part 2 346
Part 3 Basic electronics

19 Introduction to semiconductors 359
The semiconductor revolution 359
Semiconductor materials 360
Doping 362
Majority and minority charge carriers 362
Electron flow 362
Hole flow 363
Behavior of a P-N junction 363
How the junction works 364
Junction capacitance 366
Avalanche effect 366
Quiz 367

20 Some uses of diodes 370
Rectification 370
Detection 371
Frequency multiplication 372
Mixing 373
Switching 374
Voltage regulation 374
Amplitude limiting 374
Frequency control 376
Oscillation and amplification 377
Energy emission 377
Photosensitive diodes 378
Quiz 380

21 Power supplies 383
Parts of a power supply 383
The power transformer 384
The diode 385
The half-wave rectifier 386
The full-wave, center-tap rectifier 387
The bridge rectifier 387
The voltage doubler 389
The filter 390
Voltage regulation 392
Surge current 393
Transient suppression 394
Fuses and breakers 394
Personal safety 395
Quiz 396

22 The bipolar transistor 400
NPN versus PNP 400
NPN biasing 402
PNP biasing 404
Biasing for current amplification 404
Static current amplification 405
Dynamic current amplification 406
Overdrive 406
Gain versus frequency 407
Common-emitter circuit 408
Common-base circuit 409
Common-collector circuit 410
Quiz 411

23 The field-effect transistor 416
Principle of the JFET 416
N-channel versus P-channel 417
Depletion and pinchoff 418
JFET biasing 419
Voltage amplification 420
Drain current versus drain voltage 421
Transconductance 422
The MOSFET 422
Depletion mode versus enhancement mode 425
Common-source circuit 425
Common-gate circuit 426
Common-drain circuit 427
A note about notation 429
Quiz 429

24 Amplifiers 433
The decibel 433
Basic bipolar amplifier circuit 437
Basic FET amplifier circuit 438
The class-A amplifier 439
The class-AB amplifier 440
The class-B amplifier 441
The class-C amplifier 442
PA efficiency 443
Drive and overdrive 445
Audio amplification 446
Coupling methods 447
Radio-frequency amplification 450
Quiz 453

25 Oscillators 457
Uses of oscillators 457
Positive feedback 458
Concept of the oscillator 458
The Armstrong oscillator 459
The Hartley circuit 459
The Colpitts circuit 461
The Clapp circuit 461
Stability 463
Crystal-controlled oscillators 464
The voltage-controlled oscillator 465
The PLL frequency synthesizer 466
Diode oscillators 467
Audio waveforms 467
Audio oscillators 468
IC oscillators 469
Quiz 469

26 Data transmission 474
The carrier wave 474
The Morse code 475
Frequency-shift keying 475
Amplitude modulation for voice 478
Single sideband 480
Frequency and phase modulation 482
Pulse modulation 485
Analog-to-digital conversion 487
Image transmission 487
The electromagnetic field 490
Transmission media 493
Quiz 495

27 Data reception 499
Radio wave propagation 499
Receiver specifications 502
Definition of detection 504
Detection of AM signals 504
Detection of CW signals 505
Detection of FSK signals 506
Detection of SSB signals 506
Detection of FM signals 506
Detection of PM signals 508
Digital-to-analog conversion 509
Digital signal processing 510
The principle of signal mixing 511
The product detector 512
The superheterodyne 515
A modulated-light receiver 517
Quiz 517

28 Integrated circuits and data storage media 521
Boxes and cans 521
Advantages of IC technology 522
Limitations of IC technology 523
Linear versus digital 524
Types of linear ICs 524
Bipolar digital ICs 527
MOS digital ICs 527
Component density 529
IC memory 530
Magnetic media 532
Compact disks 535
Quiz 535

29 Electron tubes 539
Vacuum versus gas-filled 539
The diode tube 540
The triode 541
Extra grids 542
Some tubes are obsolete 544
Radio-frquency power amplifiers 544
Cathode-ray tubes 546
Video camera tubes 547
Traveling-wave tubes 549
Quiz 551

30 Basic digital principles 555
Numbering systems 555
Logic signals 557
Basic logic operations 559
Symbols for logic gates 561
Complex logic operators 561
Working with truth tables 562
Boolean algebra 564
The flip-flop 564
The counter 566
The register 567
The digital revolution 568
Quiz 568
Test: Part 3 572

Part 4 Advanced electronics and related technology
31 Acoustics, audio, and high fidelity 583
Acoustics 583
Loudness and phase 585
Technical considerations 587
Basic components 589
Other components 591
Specialized systems 596
Recorded media 597
Electromagnetic interference 601
Quiz 602

32 Wireless and personal communications systems 606
Cellular communications 606
Satellite systems 608
Acoustic transducers 612
Radio-frequency transducers 613
Infrared transducers 614
Wireless local area networks 615
Wireless security systems 616
Hobby radio 617
Noise 619
Quiz 620

33 Computers and the Internet 624
The microprocessor and CPU 624
Bytes, kilobytes, megabytes, and gigabytes 626
The hard drive 626
Other forms of mass storage 628
Random-access memory 629
The display 631
The printer 633
The modem 635
The Internet 636
Quiz 640

34 Robotics and artificial intelligence 644
Asimov’s three laws 644
Robot generations 645
Independent or dependent? 646
Robot arms 648
Robotic hearing and vision 652
Robotic navigation 657
Telepresence 661
The mind of the machine 663
Quiz 665
Test: Part 4 669
Final exam 679
Appendices
A Answers to quiz, test, and exam questions 697
B Schematic symbols 707
Suggested additional reference 713
Index 715

Total 748 pages 7 mb

Download
mirror
http://www.4shared.com/office/Ai_bqHCc/Teach_Yourself_Electricity_And.html
 

Read more...

Fundamentals of WiMAX understanding broadband wireless

Friday, October 23, 2009



Contens
Part I Overview of WiMAX 1
Chapter 1 Introduction to Broadband Wireless 3
1.1 Evolution of Broadband Wireless 5
1.1.1 Narrowband Wireless Local-Loop Systems 5
1.1.2 First-Generation Broadband Systems 6
1.1.3 Second-Generation Broadband Systems 8
1.1.4 Emergence of Standards-Based Technology 8
1.2 Fixed Broadband Wireless: Market Drivers and Applications 10
1.3 Mobile Broadband Wireless: Market Drivers and Applications 12
1.4 WiMAX and Other Broadband Wireless Technologies 13
1.4.1 3G Cellular Systems 14
1.4.2 Wi-Fi Systems 15
1.4.3 WiMAX versus 3G and Wi-Fi 16
1.4.4 Other Comparable Systems 17
1.5 Spectrum Options for Broadband Wireless 17
1.6 Business Challenges for Broadband Wireless and WiMAX 21
1.7 Technical Challenges for Broadband Wireless 23
1.7.1 Wireless Radio Channel 24
1.7.2 Spectrum Scarcity 25
1.7.3 Quality of Service 26
1.7.4 Mobility 28
1.7.5 Portability 29
1.7.6 Security 29
1.7.7 Supporting IP in Wireless 30
1.7.8 Summary of Technical Challenges 31
1.8 Summary and Conclusions 32
1.9 Bibliography 32

Chapter 2 Overview of WiMAX 33
2.1 Background on IEEE 802.16 and WiMAX 33
2.2 Salient Features of WiMAX 37
2.3 WiMAX Physical Layer 39
2.3.1 OFDM Basics 39
2.3.2 OFDM Pros and Cons 40
2.3.3 OFDM Parameters in WiMAX 41
2.3.4 Subchannelization: OFDMA 43
2.3.5 Slot and Frame Structure 44
2.3.6 Adaptive Modulation and Coding in WiMAX 46
2.3.7 PHY-Layer Data Rates 46
2.4 MAC-Layer Overview 47
2.4.1 Channel-Access Mechanisms 48
2.4.2 Quality of Service 49
2.4.3 Power-Saving Features 51
2.4.4 Mobility Support 52
2.4.5 Security Functions 53
2.4.6 Multicast and Broadcast Services 54
2.5 Advanced Features for Performance Enhancements 55
2.5.1 Advanced Antenna Systems 55
2.5.2 Hybrid-ARQ 56
2.5.3 Improved Frequency Reuse 56
2.6 Reference Network Architecture 57
2.7 Performance Characterization 59
2.7.1 Throughput and Spectral Efficiency 60
2.7.2 Sample Link Budgets and Coverage Range 60
2.8 Summary and Conclusions 61
2.9 Bibliography 63

Part II Technical Foundations of WiMAX 65
Chapter 3 The Challenge of Broadband Wireless Channels 67
3.1 Communication System Building Blocks 68
3.2 The Broadband Wireless Channel: Pathloss and Shadowing 69
3.2.1 Pathloss 70
3.2.2 Shadowing 74
3.3 Cellular Systems 77
3.3.1 The Cellular Concept 78
3.3.2 Analysis of Cellular Systems 79
3.3.3 Sectoring 82
3.4 The Broadband Wireless Channel: Fading 84
3.4.1 Delay Spread and Coherence Bandwidth 86
3.4.2 Doppler Spread and Coherence Time 87
3.4.3 Angular Spread and Coherence Distance 90
3.5 Modeling Broadband Fading Channels 91
3.5.1 Statistical Channel Models 91
3.5.2 Statistical Correlation of the Received Signal 95
3.5.3 Empirical Channel Models 99
3.6 Mitigation of Fading 104
3.6.1 Narrowband (Flat) Fading 105
3.6.2 Broadband Fading 107
3.6.3 Spread Spectrum and Rake Receivers 108
3.6.4 Equalization 109
3.6.5 The Multicarrier Concept 110
3.7 Summary and Conclusions 110
3.8 Bibliography 110

Chapter 4 Orthogonal Frequency Division Multiplexing 113
4.1 Multicarrier Modulation 114
4.2 OFDM Basics 117
4.2.1 Block Transmission with Guard Intervals 117
4.2.2 Circular Convolution and the DFT 117
4.2.3 The Cyclic Prefix 119
4.2.4 Frequency Equalization 122
4.2.5 An OFDM Block Diagram 122
4.3 An Example: OFDM in WiMAX 123
4.4 Timing and Frequency Synchronization 124
4.4.1 Timing Synchronization 126
4.4.2 Frequency Synchronization 127
4.4.3 Obtaining Synchronization in WiMAX 130
4.5 The Peak-to-Average Ratio 131
4.5.1 The PAR Problem 131
4.5.2 Quantifying the PAR 132
4.5.3 Clipping: Living with a High PAR 135
4.5.4 PAR-Reduction Strategies 140
4.6 OFDM’s Computational Complexity Advantage 142
4.7 Simulating OFDM Systems 144
4.8 Summary and Conclusions 145
4.9 Bibliography 145

Chapter 5 Multiple-Antenna Techniques 149
5.1 The Benefits of Spatial Diversity 150
5.1.1 Array Gain 150
5.1.2 Diversity Gain and Decreased Error Rate 152
5.1.3 Increased Data Rate 153
5.1.4 Increased Coverage or Reduced Transmit Power 154
5.2 Receive Diversity 154
5.2.1 Selection Combining 155
5.2.2 Maximal Ratio Combining 156
5.3 Transmit Diversity 157
5.3.1 Open-Loop Transmit Diversity 158
5.3.2 Nt × Nr Transmit Diversity 160
5.3.3 Closed Loop-Transmit Diversity 164
5.4 Beamforming 169
5.4.1 DOA-Based Beamforming 170
5.4.2 Eigenbeamforming 171
5.5 Spatial Multiplexing 174
5.5.1 Introduction to Spatial Multiplexing 174
5.5.2 Open-Loop MIMO: Spatial Multiplexingwithout Channel Feedback 175
5.5.3 Closed-Loop MIMO: The Advantage of Channel Knowledge 179
5.6 Shortcomings of Classical MIMO Theory 181
5.6.1 Multipath 182
5.6.2 Uncorrelated Antennas 182
5.6.3 Interference-Limited MIMO Systems 183
5.7 Channel Estimation for MIMO-OFDM 184
5.7.1 Preamble and Pilot 185
5.7.2 Time versus Frequency-Domain Channel Estimation 186
5.8 Channel Feedback 189
5.9 Advanced Techniques for MIMO 190
5.9.1 Switching Between Diversity and Multiplexing 190
5.9.2 Multiuser MIMO Systems 190

Chapter 6 Orthogonal Frequency Division Multiple Access 199
6.1 Multiple-Access Strategies for OFDM 200
6.1.1 Random Access versus Multiple Access 201
6.1.2 Frequency Division Multiple Access 202
6.1.3 Time Division Multiple Access—“Round Robin” 202
6.1.4 Code Division Multiple Access 202
6.1.5 Advantages of OFDMA 203
6.2 Multiuser Diversity and Adaptive Modulation 204
6.2.1 Multiuser Diversity 205
6.2.2 Adaptive Modulation and Coding 206
6.3 Resource-Allocation Techniques for OFDMA 209
6.3.1 Maximum Sum Rate Algorithm 210
6.3.2 Maximum Fairness Algorithm 211
6.3.3 Proportional Rate Constraints Algorithm 212
6.3.4 Proportional Fairness Scheduling 213
6.3.5 Performance Comparison 214
6.4 OFDMA in WiMAX: Protocols and Challenges 216
6.4.1 OFDMA Protocols 216
6.4.2 Cellular OFDMA 218
6.4.3 Limited Diversity Gains 219
6.5 Summary and Conclusions 219
6.6 Bibliography 220

Chapter 7 Networking and Services Aspects of Broadband Wireless 223
7.1 Quality of Service 224
7.1.1 QoS Mechanisms in Packet Networks 225
7.1.2 IP QoS Technologies 227
7.2 Multimedia Session Management 233
7.2.1 Session Initiation Protocol 234
7.2.2 Real-Time Transport Protocol 240
7.3 Security 241
7.3.1 Encryption and AES 242
7.3.2 Public Key Infrastructure 245
7.3.3 Authentication and Access Control 247
7.4 Mobility Management 249
7.4.1 Location Management 250
7.4.2 Handoff Management 251
7.4.3 Mobile IP 254
7.5 IP for Wireless: Issues and Potential Solutions 260
7.5.1 TCP in Wireless 260
7.5.2 Header Compression 263
7.6 Summary and Conclusions 265
7.7 Bibliography 266

Part III Understanding WiMAX and Its Performance 269
Chapter 8 PHY Layer of WiMAX 271
8.1 Channel Coding 272
8.1.1 Convolutional Coding 273
8.1.2 Turbo Codes 275
8.1.3 Block Turbo Codes and LDPC Codes 278
8.2 Hybrid-ARQ 278
8.3 Interleaving 279
8.4 Symbol Mapping 280
8.5 OFDM Symbol Structure 280
8.6 Subchannel and Subcarrier Permutations 282
8.6.1 Downlink Full Usage of Subcarriers 283
8.6.2 Downlink Partial Usage of Subcarriers 286
8.6.3 Uplink Partial Usage of Subcarriers 287
8.6.4 Tile Usage of Subcarriers 287
8.6.5 Band Adaptive Modulation and Coding 289
8.7 Slot and Frame Structure 290
8.8 Transmit Diversity and MIMO 292
8.8.1 Transmit Diversity and Space/Time Coding 292
8.8.2 Frequency-Hopping Diversity Code 295
8.9 Closed-Loop MIMO 296
8.9.1 Antenna Selection 297
8.9.2 Antenna Grouping 298
8.9.3 Codebook Based Feedback 299
8.9.4 Quantized Channel Feedback 299
8.9.5 Channel Sounding 299
8.10 Ranging 300
8.11 Power Control 302
8.12 Channel-Quality Measurements 303
8.13 Summary and Conclusions 304
8.14 Bibliography 304

Chapter 9 MAC Layer of WiMAX 307
9.1 Convergence Sublayer 309
9.1.1 Packet Header Suppression 309
9.2 MAC PDU Construction and Transmission 312
9.3 Bandwidth Request and Allocation 316
9.4 Quality of Service 317
9.4.1 Scheduling Services 317
9.4.2 Service Flow and QoS Operations 318
9.5 Network Entry and Initialization 319
9.5.1 Scan and Synchronize Downlink Channel 319
9.5.2 Obtain Uplink Parameters 320
9.5.3 Perform Ranging 320
9.5.4 Negotiate Basic Capabilities 322
9.5.5 Register and Establish IP Connectivity 322
9.5.6 Establish Service Flow 323
9.6 Power-Saving Operations 324
9.6.1 Sleep Mode 325
9.6.2 Idle Mode 327
9.7 Mobility Management 327
9.7.1 Handoff Process and Cell Reselection 329
9.7.2 Macro Diversity Handover and Fast BS Switching 330
9.8 Summary and Conclusions 332
9.9 Bibliography 333

Chapter 10 WiMAX Network Architecture 335
10.1 General Design Principles of the Architecture 336
10.2 Network Reference Model 337
10.2.1 ASN Functions, Decompositions, and Profiles 338
10.2.2 CSN Functions 340
10.2.3 Reference Points 341
10.3 Protocol Layering Across a WiMAX Network 341
10.4 Network Discovery and Selection 344
10.5 IP Address Assignment 344
10.6 Authentication and Security Architecture 345
10.6.1 AAA Architecture Framework 346
10.6.2 Authentication Protocols and Procedure 346
10.6.3 ASN Security Architecture 349
10.7 Quality-of-Service Architecture 349
10.8 Mobility Management 352
10.8.1 ASN-Anchored Mobility 354
10.8.2 CSN-Anchored Mobility for IPv4 356
10.8.3 CSN Anchored Mobility for IPv6 358
10.9 Radio Resource Management 359
10.10 Paging and Idle-Mode Operation 360
10.11 Summary and Conclusions 362
10.12 Bibliography 362

Chapter 11 Link-Level Performance of WiMAX 365
11.1 Methodology for Link-Level Simulation 366
11.2 AWGN Channel Performance of WiMAX 370
11.3 Fading Channel Performance of WiMAX 373
11.3.1 Channel Estimation and Channel Tracking 381
11.3.2 Type I and Type II Hybrid-ARQ 385
11.4 Benefits of Multiple-Antenna Techniques in WiMAX 387
11.4.1 Transmit and Receive Diversity 387
11.4.2 Open-Loop and Closed-Loop MIMO 389
11.5 Advanced Receiver Structures and Their Benefits
for WiMAX 396
11.6 Summary and Conclusions 398
11.7 Bibliography 399

Chapter 12 System-Level Performance of WiMAX 401
12.1 Wireless Channel Modeling 402
12.2 Methodology for System-Level Simulation 404
12.2.1 Simulator for WiMAX Networks 405
12.2.2 System Configurations 410
12.3 System-Level Simulation Results 412
12.3.1 System-Level Results of Basic Configuration 412
12.3.2 System-Level Results of Enhanced Configurations 416
12.4 Summary and Conclusions 421
12.5 Appendix: Propagation Models 422
12.5.1 Hata Model 422
12.5.2 COST-231 Hata Model 424
12.5.3 Erceg Model 424
12.5.4 Walfish-Ikegami Model 426
12.6 Bibliography



Total 478 pages 4 mb
Download

mirror
http://www.4shared.com/office/WaaqkaWW/fundamentals-of-wimax-understa.html

Read more...
Your Ad Here

Blog Catalog

Popular Posts

  © Blogger template On The Road by Ourblogtemplates.com 2009

Back to TOP